Collecting & Making Sense of Quantitative Data

Deborah Eldredge, PhD, RN
Director, Quality, Research & Magnet Recognition
Oregon Health & Science University

Margo A. Halm, RN, PhD, ACNS-BC, FAHA
Director, Nursing Research & Quality
Salem Hospital
Objectives

1. Identify principles of measurement as they relate to research design

2. Describe strategies for data collection and data management

3. Describe the differences between statistical and clinical significance
Measurement

• The process of assigning numbers to objects in accord with some rule

• Goals for Measurement
 - Capture intended phenomenon = Validity
 - Measure perform consistently = Reliability
 - Control error - Data collection & processing
Measurement Error

Observed score = true score + error

• Systematic Error:
 - Influences *direction* of the mean
 - Variation in administration of scales
 - Data processing errors
 - Situational factors

Random Error:
 - Influences *variation* around the mean
Levels of Measurement

- Nominal
- Ordinal
- Interval
- Ratio
Level of Measurement: Nominal

- Name or category only
- *Can not be ordered or compared*
- Mutually exclusive categories
- Numbers assigned as labels only
 - Ethnicity, religion, marital status
 - *Gender:* males = 1 ; females = 2
 - Experimental group, control group
Level of Measurement: Ordinal

- Attribute that can be ranked
- Interval not equal
- Intensity of pain, ability to provide self-care
- Daily exercise:
 - 0 = no exercise
 - 1 = moderate, no sweating
 - 2 = sweating, altered breathing
 - 3 = strenuous, heavy breathing
Level of Measurement: Interval

- Rank ordering with equal interval
- Continuum of values
- No absolute zero
 - Temperature:
 - 40° versus 70° same as 100° to 130°
Level of Measurement: Ratio

- Absolute zero, and all other constraints
 - Weight, length, and volume

- Most commonly, interval and ratio level data are treated the same way
Types of Measures

- Direct vs. Indirect
- Physiological vs. Psychological/Attitudinal
- Objective vs. Subjective
Physiological Measures

• Physiology has greater precision than attitudes
 - devices include thermometers, sphygmomanometers, stethoscopes, electrocardiograms, IC U monitors

• Calibration (reliability, validation)
• Inter-rater consistency
 - identify error range
<table>
<thead>
<tr>
<th>Do you do this type of help for your family member?</th>
<th>No</th>
<th>If Yes, circle how hard it is for you to do that.</th>
<th>How frequently do you do this activity?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Very Hard</td>
<td>Pretty Hard</td>
</tr>
<tr>
<td>1. Do you check in on your family member to make sure he or she is OK?</td>
<td>No</td>
<td>Yes</td>
<td>5</td>
</tr>
<tr>
<td>2. Do you monitor the number of people who come to see him or her?</td>
<td>No</td>
<td>Yes</td>
<td>5</td>
</tr>
</tbody>
</table>
Semantic Differential Scales

Continuum between two adjectives
(e.g. 'friendly and unfriendly')

Sympathetic Not sympathetic
Visual Analog Scales
10 millimeter line
Asked to mark how much they feel a certain way

Mark along the line below how **SAD** you feel at this time

Mark along the line below how **ANXIOUS** you feel at this time
Questionnaires

- Typically self-reported data
 - Demographic
 - Open-ended vs. closed-ended
 - Contingency and filler

- If mailed, send instructions re: completion
Interviews

• Types of questions
 - Open ended vs. closed ended
 - Order of questions
 - Timing and setting

• Interviewer training / guidelines

• Influence of interviewer on respondents
Observational Methods

- What is being observed?
 - Structured vs. unstructured observations
 - Event sampling and time sampling

- Training for data collection

- Relationship between observer and subjects (Hawthorne effect)

- Role of nurse vs. researcher
Plan for data collection

- What methods will be used to collect data?
 - How will the data be collected?
 - Who will collect the data?
 - Where will data be collected?
 - When will data be collected?
Variables

- **Dependent variable**: characteristic or outcome that researcher is interested in understanding, explaining, predicting, or affecting.

- **Independent variable**: presumed cause of, or antecedent to, or the influence on the dependent variable.
Selecting Instruments

• What information is available
 - Reliability
 - Validity
 - Sample for development? For testing?

• Scoring instructions

• Feasibility issues
Reliability

- **Consistency** of a measure, equivalence
- Does the instrument perform the way you expect it to across items, over time, between persons, different settings?
- Same scale used by two data collectors or in two settings would yield the same results
Internal consistency

- Correlation among items on long scale
- Expressed as a correlation coefficient (Cronbach’s alpha) with a score ranging from 0 to 1.0.
- Typically should be above .80+, new instruments acceptable at .70+
- Determined from a specific sample; may not hold true with other samples.
Stability

- Test-retest reliability, often with 2 or more measurements.
- STATE vs. TRAIT characteristics
- Consider: Did the phenomenon being measured change
 - pain or anxiety
 - optimism or attachment style
Equivalence

• Compares two versions of the same instrument

• Interrater reliability
 - 2 data collectors
 - # of agreements/# of possible agreements

• Alternate forms, parallel forms
Validity

• The extent to which the instrument actually reflects the concept being measured.

• Are you measuring what you intended to measure (or is there another concept that you might have captured)?
Content Validity

- Examines the extent to which the measure captures ALL of the relevant elements
- Literature, clinical experts, and lay experts used to generate items
- Content Validity Index
 - Relevance, comprehensiveness, readability/clarity, and face validity
Construct Validity

- Determines validity of measure by exploring a set of relationships that SHOULD map out as expected
 - Factor analysis
 - Structural equation modeling
Which is most important?

Reliability

Validity
Feasibility for Data Collection

- How difficult is instrument to complete?
- Reading level, language choices
- Is phenomena under study sensitive - would data collection change the experience?
- Cost for data collection or processing
Making Sense of Data (statistics)
What are statistics really about?

- Describe what is going on with data
- Is this group different from another group?
- How BIG is this difference? Relationship?
- Is this difference due to chance?
- What else accounts for the difference?
- Will this difference / relationship be important to patients?
Descriptive Statistics

- Used to describe major elements of the sample:
 - Demographic characteristics
 - (Did randomization work?)
 - Predictors
 - Outcomes
Distribution

- How do the data look?
- Frequency distribution or counts
- Graphed
 - pie charts
 - bar charts
 - histograms
Central Tendency

• How alike are the group members?
• Mode (nominal)
 - Score of greatest frequency
• Median (ordinal)
 - Score at center of distribution; 50%ile
• Mean (interval/ratio)
 - sum of scores / number of scores
Dispersion

- How different are the group members?
- Range
 - High to low score
- Difference scores
 - Score minus the mean
- Variance / Standard Deviation
 - Average deviation score
 - How different is mean from any individual score
Marital Status, GSS 1998; n = 1427

- NEVER MARRIED
- SEPARATED
- DIVORCED
- WIDOWED
- MARRIED
RS HIGHEST DEGREE

- LT HIGH SCHOOL
- JUNIOR COLLEGE
- BACHELOR
- GRADUATE
Age, GSS 1998; N = 1425

AGE OF RESPONDENT

Std. Dev = 17.12
Mean = 45.4
N = 1425.00
Skewed Data

• Extreme scores (either high or low) will skew data, distribution will be shifted to right or left
• Non-normal data
• Determine how outliers have been handled
• When data are skewed, important to consider both MEAN and MEDIAN
Months of Disease Free Survival

Median = 10.8
Mean = 13.4
Std. Dev = 2.96

N = 1419.00
Inferential Statistics

• Use inductive reasoning to infer from specific case to general truth
• The process of estimating that what is true in sample is true in population
• Use sample descriptive statistics to generalize to population
Inferences about...

- Tests of means (differences between groups)
 - T-test and ANOVA
- Magnitude and direction of relationship
 - Correlation and regression
Tests of Means

• Are these groups drawn from the same population?
 - Ratio of difference to variability

• T-test formula:

\[
\frac{M_1 - M_2}{(\text{pooled standard dev})}
\]
Types of T-Tests

Independent Groups
- Boys vs. Girls
- Drug A vs. Drug B
- Experimental vs. control groups

Dependent Group or Scores
- Pre-test, post-test design
- Partners’ scores
Analysis of Variance (ANOVA)

- Simultaneously analyzes the differences between several means at one time
 - 3 or more groups
 - The same group 3 or more times

- Examines the ratio of the differences between groups and the differences within groups
 - F-distribution, F-value
ANOVA is omnibus

• ANOVA tells you THAT differences exist
• Need to do comparisons to determine WHERE exact differences are, called post-hoc tests
Tests of Association

- Examines degree to which the values of one variable (X) are related to the values of another variable (Y)

- Correlation: Extent of linear relationship between two variables
 - Pearson product-moment correlation (r) - Interval or ratio data
 - Spearman’s rho (r_s, ρ) - Ordinal data
 - Contingency coefficient (C) & Chi-square (χ^2) - Nominal data
Correlation Coefficients

- Direction & magnitude of relationship
- Range from -1.00 to 0 to +1.00
- Graphed as a scatterplot

![Scatterplot showing predictability and strain from emotional support with a correlation coefficient of r = -0.57; p < 0.05.](image)
Regression Analysis

- Any technique for modeling and analyzing several variables
 - focus is on the relationship between a dependent (outcome) variable and one or more independent (predictor) variables
- helps one understand how the typical value of the dependent variable changes when any one of the independent variables is varied, while the other independent variables are held fixed.
Age and Experience on Confidence with Caregiving

Experience
\[r^2 = .34 \]

Age
\[r^2 = .09 \]

Confidence with caregiving
Multiple Regression

• Way to estimate the value of the dependent variable based on a set of independent variables.
• Can also determine unique contribution to variance
• Predict or explain as much variance as possible in dependent variable
• $y = a + b_1x + b_2X + b_3x$
Statistical & Clinical Significance

- Statistical significance is focused on whether groups different than what would happen by chance alone
 - p level .01 or .0001 does not reflect MAGNITUDE of difference
- Clinical significance is focused on whether that difference or association matters to patients
Clinical Significance

• Are the results big enough to be clinically or practically important?
• Would it make a difference to my population?
• Size of the benefit
• Depends on clinical expertise
• Rough estimate for clinical significance
 - Half a standard deviation
Some additional tidbits

- Probability / normal distribution
- Power
- Hypothesis testing
Probability Theory

• Probability of accurately predicting an event or extent of a relationship
• Chances are...
• Expressed as percentage or decimal
• Level of significance set by researcher
 - Alpha before analysis: α
 - Probability after analysis: p
Normal Curve

- Theoretical frequency distribution of all possible scores
- The larger the sample, the more certain we are the distribution is normal.
- Extreme scores at tails
 - One tail (directional hypothesis)
 - Two tail (test of any difference)
Normal Distribution

- 68.27% within one standard deviation
- 95.45% within two standard deviations
- 99.73% within three standard deviations
Significance Level: a and p

- Cutoff point used to determine whether samples being tested are different from the population
- Willingness to reject hypothesis when it should be retained
- Determined by researcher
 - Typically .05 (nursing) or .01 (pharmacologic)
- Corrected with multiple research questions
Critical Value

- Scores more extreme than critical value are 'significantly different'.
- 95% of the time, the difference would hold up in the population.
Power

- The probability that a statistical test will detect a difference that exists
- How much POWER do you have to find a true difference?
- Effected by sample size, effect size, and level of significance
- .80 ideal level of power
Hypothesis Testing Outcomes

True State of the World

<table>
<thead>
<tr>
<th>Decision</th>
<th>Ho is True</th>
<th>Ho is False</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reject Ho</td>
<td>False Rejection</td>
<td>Correct</td>
</tr>
<tr>
<td></td>
<td>Type I error</td>
<td>Power</td>
</tr>
<tr>
<td></td>
<td>Alpha Significance level</td>
<td>1-beta</td>
</tr>
<tr>
<td>Do not reject Ho</td>
<td>Correct</td>
<td>Miss</td>
</tr>
<tr>
<td></td>
<td>1-alpha</td>
<td>Type II error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>beta</td>
</tr>
</tbody>
</table>
Correct Decisions

- **Power (microscope)**
 - Reject the null hypothesis when it is false
 - Conclude that the intervention does increase positive mood when fact it does
 - Area under the H_A curve

- **Correctly not rejected**
 - Do not reject the null hypothesis when it true
 - Conclude that the intervention does not increase positive mood when in fact it doesn’t
 - Area under the H_0 curve
Errors in Hypothesis Testing

• **Type I: false rejection**
 - reject null hypothesis when in fact it is true
 - Area under the Ho curve
 - conclude that the intervention works when it does not (adopt faulty intervention)

• **Type II: missed result**
 - do not reject null hypothesis when in fact it is false
 - Area under the H_A curve
 - conclude that the intervention does not work when it does (reject successful intervention)
Trade-off of Errors

- Need to weigh the importance of the different errors in the context of your study
 - Type I error: accept drug when it is not effective
 - What if it has lots of side effects?
 - Type II error: miss a drug that is effective
 - Stop a line of inquiry that may be productive
Reporting statistical findings

• Report statistic
 - t, F, r, R²
• Report degrees of freedom
• Report probability
 - p value
• Okay to report selected findings
 - Most interesting findings
 - Don’t forget non-significant findings